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Letters 

The formation of ~' lath martensite in a 
textured (a + ~) Fe-23. 19 wt % 
Cr-4.91 wt % Ni alloy 

It is known that the rate of martensite trans- 
formation during tensile straining is dependent 
upon the direction of the applied stress [1], and 
that the formation of martensite from textured 
austenite (7) is affected by the stress axis [2]. 
The integrated intensity of the (2 1 1)N reflection 
for tensile directions at 0 ~ and 45 ~ to the roiling 
direction was greater than those of the (2 0 0)M 
and (1 10)M reflections, while the integrated 
intensity ratios of (2 0 0)M and (1 1 0)M reflec- 
tions in a 90 ~ specimen were greater than that 
of (2 1 1)M [3]. The subscript M refers to a plane 
of b c c  martensite or ferrite. In fractured speci- 
mens with tensile directions at 0 ~ 45 ~ and 90 ~ to the 
rolling direction, it has been shown that the differ- 
ent integrated intensity ratios occur due to the 
formation of particular Kurdjumov-Sachs (K-S),  
variants during martensite transformation [4]. In 
the present study, this particular formation of a' 
laths is discussed. 

The composition (wt%) of the two-phase 
Fe-Cr -Ni  alloy, with ferrite (a) and austenite 
(7) phases, used in the present work, was 23.19 Cr, 
4.91Ni, 0.025C, 1.47Mo, 0.53Si, 0.51Mn, 
0.91 A1, 0.023 P, with the balance Fe. Sheet speci- 
mens 2.0 mm thick were cut parallel to the rolling 
direction, to make a gauge section 6.0ram x 18.0 mm 
The sheet specimens were annealed for 1 h at 
1273 K in a vacuum furnace, to produce an alloy 
with a mean grain diameter of 8.0gm and con- 
taining 52 vol % of 7. The resultant (2 0 0)A pole 
figure of the 7 phase contained both (1 1 0)n 
[332]A a n d  (225)A [232 ]A  components, as 
shown in Fig. 1. The subscript A refers to a plane 
of austenite. The specimens were deformed to 
tensile strains of 4, 18, 28, 32 and 38% at 77K, 
in an Instron-type testing machine at a cross-head 
speed of 0.8 x 10 -s msec -1 . After tensile deform- 
ation, six X-ray diffraction patterns of (1 1 1)A, 
(2 0 0)h and (2 20)A reflections, and (1 1 0)M, 
(200)M and (2 1 1)M reflections were measured 
to determine the presence of ~' lath martensite 
induced by tensile straining. 
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Figure 1 (200) A pole figure. The triangle indicates a 
(110)A [3321A component and the closed circle a 
(225)A [232]A component. R. D. and T. D. indicate 
rolling and transverse directions, respectively 

Fig. 2 shows the variation of the integrated 
intensity ratio with tensile strain at 77 K. The 
ratios for the (1 1 1)A, (2 0 0)A,(2 2 0)A, (1 1 0)M, 
(200)M and (2 1 1)M reflections are the ratios of 
integrated intensity for a specimen deformed to a 
certain tensile strain, I, to those of an annealed 
specimen, I ~ The ratios for the (1 1 1)A, (2 0 0) h 
and (2 2 0)A reflections decreased with increasing 
tensile strain due to the occurrence of martensite 
transformation, and reached a zero value at 38.0% 
strain, at which all the 3, transformed to ~'. In con- 
trast the integrated intensity ratios for the 
(2 1 1)M, (2 00)M and (1 1 0)M reflections changed 
to ~ 2.5, 1.3 and 0.7, respectively, at this tensile 

strain. It is therefore deduced that there are more 
(2 1 1) M reflections than (2 0 0)M and (1 1 0)M 
reflections. 

Table I shows the values of U/a in 2 4 K - S  
variants for the [3 2 3] A and [2 2 3] A tensile axes 
in the {1 1 1 }A (1 1 2) A shear system. U and o are 
the work done by the martensite transformation 
due to the action of applied stress and the applied 
stress, respectively. Thus, U/o indicates the mech- 
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TABLE I Values of U/a in 24 K-S variants for [3 2 3] A and [2 2 3] A tensile axes 

K-S relation Variant 
notation 

Direction 
[A] II [M] 

Plane 
(A) II (M) 

Values of U/o in two tensile 
directions 

[3231 [223] 

( l l  1) II (1 lO) 

(1 1 1)II (1 1 o) 

(1 i ~)II (1 1 o) 

(111)  t1(110) 

[1 0_11 [_[ 1i1 -1 0.0624 0.0426 
[01 iI [11 11 -2  0.0779 0.0214 
[110] [ i l T ]  1-3 0.0779 0.1115 
[101] [111] -4  0.0624 0.1019 
[011] [] 11] -5 --0.0455 --0.0424 
[110] [111] -6  --0.0455 --0.0467 

[1 0 11 [ 1 1 1 ] -1 -- 0.0024 -- 0.0025 
[101] [111] -2  0.0032 --0.0025 
[1101 [1111 2-3 0.0032 0.0035 
[1011 [1111 -4  --O.0O24 0.0100 
[011] [111] -5  0.0036 0.0100 
[110] [111] -6  0.0036 0.0035 

[ i01 ]  [111] -1 0.0717 0.0214 
[0 1 ]] [1 1 1] -2  0.0547 0.0426 
[110] [1111 3-3 -0.0554 -0.0467 
[1 0 1] [] 1 1] -4  --0.0499 --0.0424 
[01_1] [111] -5 0.1104 0.1019 
[110] [1111 -6  0.1234 0.1115 

[ lO l l  [111] -1 -0.0499 -0 .0564 
[011] [111] -2  --0.0554 --0.0564 
[110] [1 1 11 4-3  0.0547 0.0873 
[101] [111] -4  0.0717 0.1046 
[011] [111] -5 0.1234 0.1046 
[110] []11]  -6 0.1104 0.0873 
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Figure 2 The variation of integrated intensity ratio of 
(211)M, (200)M, ( l l 0 ) M ,  (220)  A, (200) A and 
(111)A reflections with tensile strain at 77 K. 

anical work per unit volume of austenite reacted 
to martensite, as defined by Patel and Cohen [5]. 

In the shear system, the habit plane and the 
direction of shape deformation were assumed to 
be {1 1 2}A and (1 1 0)A, respectively, according to 
the stereographic projection shown in [4]. The 
values of  U/o had either plus or minus signs, as 
shown in Table I. K - S  variants with plus and 
minus signs form by tensile straining and com- 
pression testing, respectively [6]. As tensile 
deformation is carried out, it is expected that 
the K - S  variants with the maximum value of 
U/o are induced by the deformation. Thus, 3 - 6  
and 4 - 5  variants; and 1 - 3  and 3 - 6  variants were 
detected for the [ 3 2 3 ] A  and [ 2 2 3 ] A  tensile 
axes, respectively. In [4], 3 - 6  in [3 231A and 
1--3 in [22 3] A are K - S  variants which form 
the {2 1 1 }M poles. 

In the present study the double shear process, 
proposed by Bogers and Burgers [7], is discussed 
to obtain possible K - S  variants in relation to the 
process, as suggested by Higo et al. [8]. Table II 
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TAB L E I I Values of Schmid factor in 12 shear directions 
for [3 2 3] A and [2 2 3] A tensile axes 

Plane Shear T h o m p s o n  Values of  Schmid 
(A) direction te t rahedron factor in two tensile 

[A] notation directions 

[3231 [223] 

(1 1 1) [2 1 1] Ca -- 0.204 --0.124 
[ 1 2 1 ] Da 0.421 0.365 
[1 1 2] Ba --0.217 --0.240 

(1 1 1) [2 1 1 ] B6 -- 0.066 -- 0.100 
[121] A6 0.159 0.081 
[1 1 5] C6 --0.093 --0.181 

(1 1 1) [2 T 1] Dr3 0.253 0.378 
[1 21] C~ --0.093 --0.133 
[1121 A/~ --0.161 --0.246 

(111) [271] Av --0.143 --0.075 
[12 11 By --0.088 --0.077 
[1 1 21 D2, 0.231 0.152 

shows the values of Schmid factor in 12 shear 
directions for [3 2 3] A and [2 2 3] A tensile axes. 
As a shear direction with a maximum value of  
Schmid factor, Da and D/3 are found for [3 2 3] A 
and [2 2 3] A tensile axes, respectively. In [3 2 3] A 
tensile axis, 1--5 and 1 - 6  variants contain Da as a 
first shear and 3 - 6  and 4 - 4  contain D/3 as a 
second shear and 3 - 3  and 3 - 4  contain D/3 as a 
first shear in [2 2 3] a axis. As shown in Table I, 
1 -5  and 1 - 6  variants in [323 ]  A and 3 - 3  and 
3 - 4  variants in [223 ]  A, are formed by com- 
pression testing, and 4 ~ t  variants in [2 2 3] A have 
the second largest value of  U/o. K - S  variants 
obtained by Schmid factor do not necessary agree 
with those which are obtained by the U/a 
calculation. Then, by discussing K - S  variants ob- 
tained from two methods, 3 - 6  variant in [3 2 3] A 

and 1 -3  variant in [2 2 3] A are selected as the 
variants which agree each other. Finally, cal- 
culating both the interaction of  applied stress with 
displacive shear during martensite transformation 
and possible Kurdjumov-Sachs variants in relation 
to the double shear process, Kurdjumov-Sachs 
variants induced by tensile deformation were ob- 
tained (Table II). 
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Explosive-shock deformation of natural 
chalcopyrite (CuFeS2) 

The authors recently described the defect structure 
in natural chalcopyrite utilizing transmission 
electron microscopy [1 ] .  On the basis of  these ob- 
servations, it was concluded that the apparently 
low stacking-fault free energy in CuFeS2 which 
was deduced from numerous observations o f  
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stacking faults, would give rise to abundant 
mechanical twins accommodating large defor- 
mations. It was assumed in fact, that large numbers 
of  stacking faults and twin faults might form in 
response to large deformation such as explosive- 
shock deformation as in the case of fc  c metals 
and alloys and other minerals [2=5] .  

The present study involved :an experiment to 
test this prediction. A whole section of  natural 
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